Compositional models for VQA: Can neural module networks really count?
نویسندگان
چکیده
منابع مشابه
Deep Compositional Question Answering with Neural Module Networks
Visual question answering is fundamentally compositional in nature—a question like where is the dog? shares substructure with questions like what color is the dog? and where is the cat? This paper seeks to simultaneously exploit the representational capacity of deep networks and the compositional linguistic structure of questions. We describe a procedure for constructing and learning neural mod...
متن کاملC-VQA: A Compositional Split of the Visual Question Answering (VQA) v1.0 Dataset
Visual Question Answering (VQA) has received a lot of attention over the past couple of years. A number of deep learning models have been proposed for this task. However, it has been shown [1–4] that these models are heavily driven by superficial correlations in the training data and lack compositionality – the ability to answer questions about unseen compositions of seen concepts. This composi...
متن کاملCan artificial neural networks learn language models?
Currently, N-gram models are the most common and widely used models for statistical language modeling. In this paper, we investigated an alternative way to build language models, i.e., using artificial neural networks to learn the language model. Our experiment result shows that the neural network can learn a language model that has performance even better than standard statistical methods.
متن کاملDynamic Compositional Neural Networks over Tree Structure
Tree-structured neural networks have proven to be effective in learning semantic representations by exploiting syntactic information. In spite of their success, most existing models suffer from the underfitting problem: they recursively use the same shared compositional function throughout the whole compositional process and lack expressive power due to inability to capture the richness of comp...
متن کاملKnowledge Refinement Using Fuzzy Compositional Neural Networks
Fuzzy relations as representational tools and fuzzy compositional operators as reasoning components, are user in this paper in order to represent knowledge expressed in semantic rules. Furthermore, neural representation and resolution of composite fuzzy relation equations provides knowledge refinement and adaptation to a specific context. A two-layer fuzzy compositional neural network is propos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Computer Science
سال: 2018
ISSN: 1877-0509
DOI: 10.1016/j.procs.2018.11.110